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FOREWORD 

Uniform burning of propellant is a major factor in the performance 
of rocket motors with solid propellant grains.   Interface separations be- 
tween adjacent materials - casing, liner, thermal insulator, propellant 
grain - may permit undesired ignition and irregular combustion.   Func- 
tion of the rocket motor may be impaired even to the point of failure. 
Hence the determination of the existence and especially the dimensions 
of such separations is of great importance. 

This report presents the theoretical considerations for the determina- 
tion of interface separations by radiography and the experimental verifi- 
cation of these considerations.   The theoretical considerations and the 
experimental data apply to the POLARIS Missile.   The findings, however, 
are applicable to all solid propellant rocket motors of comparpble size. 

The great value of this work has been recognized in the form of a 
Navy Superior Civilian Service Award to the Author, Dr. J. I. Bujes.   In 
making the award Admiral W. F. Raborn said "This system Is now in full- 
scale operation is developing into a key item in the Production 
Acceptance Tests of POLARIS motors and is currently being pre- 
pared as an Ordnance Specification."   Perhaps of even greater satisfac- 
tion to the Author has been the conspicuous success in forecasting the 
behavior of POLARIS motors. 
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INTRODUCTION 

Uniform burning of propellant is a major factor in the successful 
performance of rocket motors with solid propellant grains.    The con- 
struction of a motor - case, liner, and/or inhibitor, propellant grain - 
is designed to provide optimum conditions for uniform combustion. 

In some cases where the grain must be bonded to the casing, the 
liner may serve both as inhibitor and bonding agent.   Failure of the bond- 
ing - regardless of cause - may seriously affect the performance of the 
motor, even to complete failure.   The most critical area of separation is 
the interface between the propellant grain and the liner. 

A reliable method not only for the detection, but also for the deter- 
mination of the degree of separation, is thus essential, in order to co- 
ordinate the dimensions of the separations with rocket performance and 
so lead to knowledge of acceptable limitations. 

The use of x-ray is the method of choice.   However, two problems 
are involved.   The first of these is that of obtaining radiographs that can 
be interpreted with a high degree of uniformity among different observers. 
The second is to eliminate, as far as possible, the human equation in 
the evaluation. 

THEORETICAL 

Consideration of the geometry (Fig.  1) of a rocket motor and of the 
characteristic x-ray absorption factors of the various materials, forces 
the conclusion that radiography must be in the direction tangential to 
the critical area.   If the attempt is made to x-ray in a radial direction, 
a separation of 0 .001 inch would not produce a film density differential 
that could be reliably interpreted. 

However, if the x-ray beam passes tangentially through an unbond- 
ed area, it is the chord that is traversed. Even with a radial separation 
distance of only 0.001 inch and a grain diameter of 16.5 inches, the 
average chord dimension for the area is 0.193 inch.   This distance is suf- 
ficient to produce film density differences that can be reliably interpreted. 
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Fig. 1 

The geometry of a separation showing the relation between radial 
separation distance and chord dimension is shown in Figs. 2 and 3. 
Average chord lengths for grain diameters of 53.5 inches and 16.5 inches 
are shown in Tables 1 and 4. 
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Geometry of separation 
depth and chord length 

AC = g (separation depth) 
BC = s (half chord) 
OA = r 

then 
s2   = g (2r-g) 
s    = g /IF-q' (1) 

Since gaps greater than 0 .1 inch radial dimension were not con- 
sidered, equation (1) can be approximated as 

s    = fl gr (2) 
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Average chord length 

D 

Since the chord length in the 
area ABD varies from 0 to 2s, 
the average chord length (EF ) 
s ' was approximated by cal- 
culation at 1.5s. 

The chord lengths for the air gap and the adjacent material are 
equal, and the film density difference, AD, can be computed from Lam- 
bert's basic absorption equation 

I^e-Mt, 

-M(t-t)        -/x(At) 
i— = e l      s   = e (3) 

e 

in which M is the absorption coefficient and t is the linear dimension of 
the x-ray path (Fig. 4), 

In logarithmic form this becomes 

Log lx - Log^ = -JLI A t Log e. 

Since Log   e = 0.434,  1 inch = 2.5cm, s' =    At, the above 
may be written 

Logrelexpi - Logrelexps = -1. l^s '. (4) 

This must be converted to x-ray absorption coefficient u   spe- 
cific for the energy source and the substances involved. 

For Cobalt 60 and propellant p 1.7, u is approximately 0.1 
and ALogrelexp = -.lls'. For liner p 1.05 u ist. 062 and ALogrelexp 
= -0.068s'. .x 
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TABLE 1. Radial Interface Separation and Chord Length 

3 ■ g x 2r •. s- ■ . sr... 

0.001 In. 0.0535 in. 0.232 in. 0.348 in. 
.005 .2675 .519 :   .778 

.  .010 .5350 .733 1.100 
.015 ..  .8025  . .898 .  1.347 

. .020 1.0700 1.038 ■ 1.557 
.050 2.6750 1.635 2.455 

0.100 5.3500 2.320 3.480 

2r = 53.5 inches s'= 1.5s 

In the following tables it is considered that the separation lies be- 
tween liner and propellant grain, and the film density differentials have 
been calculated accordingly.   Radial dimension of separation is repre- 
sented by g.   The average chord length, s'# is 1.5s.   In all the tables a 
film density of 3 for the air gap has been assumed.   Except in Table 9 
the calculations are based upon Cobalt 60 as a source. 
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TABLE 2, Calculated Film Density Differentials 
- Propellant Grain and Air Gap - 

g s' ALogrelexp D
1 

D
2 

AD 

0.001 in. 0.348 in. 0.0383 3 2.80 0.20 
.005 0.778 .0855 3 2.56 .44 
.010 1.100 .1210 3 2.40 .60 
.015 1.347 .1482 3 2.29 .71 
.020 1.557 .1713 3 2.20 .80 
.050 2.455 .2700 3 1.86 1.14 

o.ioo 3.480 0 .3830 3 1.56 1.44 

2r = 53.5 inches Kodak Film KK 

In this table, as in Tables 3,  5, 6,  7 and 8, D   , the film density 
of the air gap, is assumed as 
is calculated thus: 

3.   D    , the film density for the propellant. 

Logrelexp (corresponding to D3) is diminished by ALogrelexp to 
Logrelexp . This makes it possible to derive D from the characteris- 
tic x-ray film curve (Fig. 5) . 

From the x-ray absorption coefficients and the average chord 
length it is then possible to calculate the film density differentials for 
the various radial dimensions of unbonded areas.    Tables 1 through 9 
give these data. 

TABLE 3. Calculated Film Density Differentials, AD,, 
for Liner and Air Gap 

.'■;■'■ g ;■ s' ALogrelexp ^ •   Ds 
AD 

O.OOlin. 0.348 in. 0.0237 3  . 2.88 0.12 
■    .005 .778 .0530   ■ 3 2.72 .28 

.010 1.100 .0746 3 2.62 .38 

.015 1.347 .0915 3 2.54 .46 

.020 1.557 .1060 3 .2.47 .53 

.050 2.455 .1670 3 2.16 .84 
0.100 3.480 0.2370 3 1.81 1.19 

2r = 53.5 inches Kodak Film KK 
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TABLE 4. Radial Interface Separation and Chord Length 

g g x 2r s s' 

0.001 in. 0.0165 in. 0.129 in. 0.193 in. 
.005 .0825 .289 .434 
.010 .1650 .405 .608 
.015 .2480 .500 .750 
.020 .3300 .577 .865 
.050 .8250 .913 1.370 

0.100 1.6500 1.650 1.935 

2r = 16.5 inches s'  =   1.5 s 

TABLE 5, Calculated Film Density Differentials A D 
for Propellant Grain and Air Gap 

g s' A Logrelexp ^ D 
3 

AD 

.  0.001 in. 0.193 in. 0.0212 3 2.90 0.10 
,005 .434 .0478 3 2.76 .24 
.010 .608 .0670 3 2.66 .34 
.015 .750 .0825 3 2.59 .41 

'.  .020 .865 .0950 3 2.52 .48 
.050 1.370 .1510 3 2.24 .76 

..0.100 1.935 0.2130 3 1.93 1.07 

2r = 16.5 Inches Kodak Film KK 

TABLE 6.                 Calculated Film Density Differentia 1 AD 
for Liner a nd Air Gap 

g S' ALogrelexp ^ D
2 

AD 

0.001 in. 0.193 in. 0.0131 3 2.935 0.065 
.005 .434 .0298 3 2.850 .150 
.010 .608 .0415 3 2.790 .210 
.015 .750 .0513 3 2.750 .250 
.020 .865 .0590 3 2.700 .300 
.050 1.370 .0933 3 2.530 .470 

0.100 1.935 0.1320 3 2.340 0.660 
2r = 16.5 inches Kodak Film KK 
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Although the chord length at the smaller radius (2r =16.5 inches) 
is much less (e.g. at separation depth, - 0.001 inches - 0.193 inches 
vs. 0.348 inches for 2r = 53.5 inches), and hence the film density dif- 
ferentials are smaller, even at this separation depth, the film density 
differential is still 0.065 between air gap and liner. 

Two similar computations were made for Kodak Film AA. 

TABLE 7. Calculated Film Density Differentials AD 
for Propellant and Air Gap 

g s' ALogrelexp D 
i 

D 
2 

AD 

0.001 in. 0.193 in. 0.0212 3 2.87 0.13 
,005 .434 .0478 3 2.71 .29 
.010 .608 .0670 3 2.64 .36 
.015 .750 .0825 3 2.51 .49 
.020 .865 .0950 3 2.43 .57 
.050 1.370 .1510 3 2.09 .91 

0.100 1.935      ■ 0.2130 3 1.72 1.28 

2r = 16.5 inches Kodak Film AA 

TABLE 8 Cc ilculated Film Density Differentials AD 
for Liner and Air Gap 

g s' ALogrelexp D 
i 

D
S 

AD 

0.001 in. 0.193 in. 0.0131 3 2.922 0.078 
.005 .434 .0298 3 2.820 .180 
.010 .608 .0415 3 2.750 .250 
.015 .750 .0513 3 2.690 .310 
.020 .865 .0590 3 2.650 .350 
.050 1.370 .0933 3 2.450 .550 

0.100 1.935 0.1313 3 2.220 0.780 

2r = 16.5 inches Kodak Film AA 
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TABLE 9. Calculated Film Density Differentials AD 
for Propellant and Air Gap, Using 

22 Mev Betatron 

g s' ALogrelexp D D AD 

0.001 in. 0.193 in. 0 .008 3 2.952 .048 
.005 .434 .018 3 2.892 .108 
.010 .608 .025 3 2.850 .150 
.015 .750 .031 3 2.814 .186 
.020 .865 .035 3 2.790 .210 
.050 1.370 .056 3 2.664 .336 

0.100 

2r 

1.935 0 .079 3 2.526 .474 

= 16.5 inches Kodak Film AA 

The calculated values for AD in Tables 5, 6, 7 and 8 vs. separa- 
tion depth g are shown in a semi-logarithmic coordinate system in 
Fig. 5.   The close agreement between the two types of film is explained 
by the assumption of D = 3 for the air gap, resulting in maximum con- 
trast, 6 for Film AA and 5 for Film KK. 

The preceding computations are based upon radiographs without 
scattering "•) or prefogging.   An original density curve and the correc- 
tions made necessary by increased background due to scattering are il- 
lustrated in Fig. 6.   It will be noted that the loss of contrast is greatest 
at low densities and becomes nominal at density 3. 

EXPERIMENTAL 

According to the theoretical calculations it seemed very highly 
probable that actual radiography would successfully identify interface 
separations of very small gap depth» 

Accordingly/ models were set up in which the air gap between pro- 
pellant and liner material could be fixed at any desired distance.   The 
outside diameter of the simulated rocket motor cross-section was 24 
inches; the steel casing was 0<,125 inch in thickness; the rubber insu- 
lator material was 0.25 inch.   The propellant cross-section diameter was 
thus 23.25 inches.    The air gaps were obtained by the use of shims of 
the desired dimensions inserted between liner and propellant. 

Seeman, H. E.,   "Secondary Radiation in the Radiography of Aluminum, 
Steel, and Lead", Communication No. 689, The Eastman Kodak Co. 

8 
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The x-ray source was a 22 Mev Betatron, with a focal spot one- 
quarter millimeter square. The distance from source to film was 6 feet, 
while that from the model to the film was 10 inches. 

The theoretical computation of the film density differentials for 
the Betatron is found in Table 9,   The x-ray absorption coefficient for 
the propellant using the 22 Mev Betatron is 0.037 as compared to 0.1 
for the radiation of a Cobalt 60 source. 

It is noteworthy that even under these unfavorable conditions air 
separations as small as 0,001 inch were apparent to the unaided eye. 
The film density differentials of the critical areas are readily read by 
the densitometer which gives readings reproducible to ±0.02.   The 
trained eye can conservatively distinguish film density differentials of 
the same order of magnitude. 

One of the experiments is illustrated in Fig, 7 .   In this experi- 
ment p for the propellant was 1,6, and that of the liner 1.4.   The radial 
dimension of the air gap was 0,003 inch. 

It must be noted that this is a positive reproduction of an x-ray 
film and appears much like an ordinary photograph, in that the air gap 
is light and the shim areas dark.    It is also noticeable (and noteworthy ) 
that the air gap appears in the film to be considerably wider than is ac- 
tually the case.   This phenomenon is the result of several parameters, 
and is very useful as it makes visual detection of separation areas much 
easier.   Otherwise this apparent difference in dimension is not important 
as it is only the film density differential that is significant. 

CONCLUSIONS 

Computations based upon the geometry of a rocket motor and the 
x-ray absorption coefficients of the materials indicated the feasibility 
of detecting interface separations in rocket motors even when the radial 
dimension of the unbonded area is as small as 0.001 inch.   These con- 
clusions were amply verified by experiments.   Tangential radiography of 
interface areas in rocket motors thus provides a basis upon which to de- 
velop an in-process and end-product inspection. 
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RECOMMENDATIONS 

The suggested method, using a high-energy source such as a 
22 Mev Betatron should be developed into a practical inspection method. 
Exposure times are not excessive for space motors of the dimensions 
now in use. 

o 

However, such a method is already threatened with obsolescence 
by the demand for solid propellant motors of larger size.   Significantly 
increased dimensions will require intolerably long radiographic expo- 
sure times»   Further, larger motors will require more radiographs to ex- 
amine the whole circumference of critical areas,   A radiograph covering 
15 degrees of circumference may be neither practical nor reliable. 

It is therefore strongly urged that other methods of inspection be 
investigated.   The use of scintillators and ancillary equipment might 
offer a completely filmless process and make possible a completely 
automated inspection procedure for even the largest space motors,. 

d) Seeman, H, E,,   " Secondary Radiation in the Radiography of Alumi- 
num, Steel, and Lead", Communication No, 689, The Eastman Kodak 
Company« 

10 
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Fig. 7      X-ray of Simulated Motor Section 
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